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Matrices and vectors become useful in multi-dimensional
problems, e.g. systems of equations or di�erential equa-
tions; hence it is important to know their properties.

Linear independence

The span of a set of vectors S = {ṽ1, ṽ2, · · · ṽn} is the
set of all linear combinations of vectors ṽ1, ṽ2, · · · ṽn, i.e.
the set of all the vectors written in the form:

c1ṽ1 + c2ṽ2 + · · ·+ cnṽn with (ci)1≤i≤n real numbers

Linear independence: a set of vectors {ṽ1, ṽ2, · · · ṽn} is
linearly dependent if and only if:

� either one of the vectors can be written as a linear
combination of the other vectors;

� or: the equation c1ṽ1 + c2ṽ2 + · · · + cnṽn = 0 has
one non-trivial solution (other than ci = 0 for all i);

� or: the linear system with augmented matrix A|0̃,
where A is the matrix

(
~v1, ~v2 · · · , ~vn

)
, has a non-

trivial solution.

Matrix algebra

De�nition of a matrix: A matrix of order m×n is a block
of elements arranged in m rows and n columns:

Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n


A square matrix is a matrix which has the same number
of rows and columns, and a diagonal matrix has non-zero
coe�cients on the diagonal only. Column vectors and row
vectors are particular matrices of order (m, 1) and (1,n)
respectively.

Scalar product: this is the product of a row vector and
a column vector which both have the same number of el-
ements. Given a row vector r =

(
a1, a2, · · · an

)
and a

column vector c =
(
b1, b2, · · · bn

)
, then the scalar product

of r and c is:

r · c =

n∑
i=1

aibi

Multiplication of matrices: you can only multiply a ma-
trix A (l,m) with a matrix B (m,n) and you get a matrix
of order (l,n). Then the matrix C = A ·B has coe�cients:

ci,j =

m∑
k=1

ai,kbk,j

Trace of a square matrix A: this is the sum of all elements
on the diagonal of A.

Determinant of a square matrix A: this is written |A| or
det A. The determinant of a matrix A2,2 is

det A = a1,1a2,2 − a1,2a2,1

For matrices An,n of higher order:

det A =

n∑
j=1

(−1)i+jMi,jai,j

where Mi,j is the minor, i.e. the determinant of the matrix
obtained by removing row i and column j from A. The term
(−1)i+jMi,j is called the cofactor of ai,j.

Transpose of a square matrix A: this is written AT or A′

and it is obtained by 
ipping the rows and columns of the
matrix. The transpose of a row vector becomes a column
vector. Given 2 matrices A and B and a scalar k, we have
the following properties:

(AT)T = A

(kA)T = kAT

(A + B)T = AT + BT

(AB)T = BTAT

Inverse of a square matrix A (n,n): is a matrix, written
A−1, such that AA−1 = A−1A = In where In is the iden-

tity matrix:


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

. Not all matrices have an

inverse.
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The inverse A−1 of a matrix A, if it exists, can be calcu-

lated with the following formulae: A−1 =
1

det A
CT where

C is the matrix of cofactors of A. Therefore, if the de-
terminant of a matrix is 0, then it is not invertible. The
following properties hold:

(A−1)−1 = A

(kA)−1 =
1

k
A−1

(AB)−1 = B−1A−1

(AT)−1 = (A−1)T

Rank of a matrix: this is the order of the largest square
sub-matrix with non-zero determinant. Alternatively, this
is the number of rows (equivalently columns) which are
linearly independent.

Elementary row operations: these are used in the Gaus-
sian elimination method to solve systems of equations.
There are:

� Interchanging rows;

� Multiplying the elements of a row by a scalar;

� Adding or subtracting to the elements of a row the
corresponding elements of another row.

Eigenvalues and eigenvectors: the eigenvalues λi and
eigenvectors Xi are such that AXi = λiXi. The eigenvalues
are found by solving the polynomial: det(A− λiIn) = 0.
The eigenvectors may then be found by solving AXi =
λiXi.

Di�erential Equations

First order ODEs of the form
dy

dt
= f(y)g(t) can be

solved by the method of separation of variables:∫
dy

f(y)
=

∫
g(t)dt so H(y) = G(t) + C where C is a con-

stant of integration. It may be possible to rearrange and
get an explicit expression for y. A classic example is the

ODE
dy

dt
= ay which has solution y = Ceat.

First order ODEs of the form
dy

dt
+ P(t)y = Q(t) can be

solved by the method of integrating factor.

De�ne the integrating factor IF(t) = e
∫
P(u)du then y(t) =

e−
∫
P(u)du

(∫
Q(u)IF(u)du + C

)
where C is a constant

of integration.

Homogeneous second order ODEs are of the form:

a
d2y

dt2
+ b

dy

dt
+ cy = 0.

Solutions of these ODEs are: y(t) = c1er1t + c2er2t where
(c1, c2) are constants of integration and (r1, r2) are the
solutions of the characteristic equation ar2 + br + c = 0.

If the two roots are equal r1 = r2 = r then the solutions of
the ODEs are y(t) = c1ert + c2tert.

Second order ODEs with right hand side are of the form

a
d2y

dt2
+ b

dy

dt
+ cy = f(t). The solutions of these ODEs are

of the form y(t) = yH(t) + yP(t) where yH(t) is the so-
lution of the corresponding homogeneous ODE found as
above and yP(t) is a particular integral of the ODE. The
form of the particular integral will be found using guidelines
on Table 1.

Table 1: Finding a particular integral to a second order ODE

with right hand side. The constants C and D are found by

`plugging' the particular integral in the ODE, which will lead to

conditions that de�ne C and D.

For f(x) of the
form:

Try a particular integral
of the form:

k C
kx Cx + D
kx2 Cx2 + Dx + E
k sin x or k cos x C cos x + D sin x
k sinh x or k cosh x C cosh x + D sinh x

ekx Cekx

erx, where r is a root
of the characteristic
equation

Cxerx or Cx2erx
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Solving systems of two linear �rst order di�erential
equations : we will only consider systems of 2 equations
in this lea
et.


dx

dt
= a11x + a12y

dy

dt
= a21x + a22y

We write X =

(
x
y

)
and A =

(
a11 a12
a21 a22

)
. Then the

system of ODEs is equivalent to
dX

dt
= AX and the so-

lutions are: X = c1V1eλ1t + c2V2eλ2t, where (λ1, λ2) are
the eigenvalues and (V1,V2) are the eigenvectors of the
matrix A. The eigenvalues can be found using the follow-

ing formulae: λ1,2 =
β ±

√
β2 − 4γ

2
with β = tr(A) and

γ = det A.

An equilibrium solution is a solution for which
dy

dt
= 0

(for a �rst order ODE) or
dX

dt
=

(
0
0

)
(for a system of

ODEs). In the case of a �rst order ODE, an equilibrium
may be attracting (sink) if nearby solutions (i.e. solutions
with initial condition close to the equilibrium) converge to
the equilibrium or repelling (source) if nearby solutions di-
verge from it. For a system of ODEs, the stability of the
equilibrium may be classi�ed as follows (see Figure 1):

� If β < 0 and γ > 0, the equilibrium is stable (stable
node is β2 > 4γ and stable spiral is β2 < 4γ);

� If γ < 0, the equilibrium is a saddle point;

� If β = 0 and γ > 0, the equilibrium is a neutral
centre;

� If β > 0 and γ > 0, the equilibrium is unstable
(unstable node if β2 > 4γ and unstable spiral if
β2 < 4γ).
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Figure 1: β − γ parameter plane: change in the nature of an

equilibrium with the value of the trace (β) and determinant (γ)
of the system matrix.

Systems of non-linear equations are usually not solv-
able analytically but can be linearised around an equilibrium
point. Consider a system with equilibrium (x0, y0):

dx

dt
= F(x, y)

dy

dt
= G(x, y)

Then in the neighbourhood of (x0, y0), the system can be

approximated to:
dX

dt
= J(x0, y0)X with the Jacobian ma-

trix J(x0, y0) =


∂F

∂x
(x0, y0)

∂F

∂y
(x0, y0)

∂G

∂x
(x0, y0)

∂G

∂y
(x0, y0)



Partial derivatives and Partial Di�erential Equations

First partial derivatives: consider a function of two vari-
able f(x, y), then:

� the �rst derivative of f with respect to x,
∂f

∂x
or fx,

is obtained by di�erentiating f treating y as a con-
stant;

� the �rst derivative of f with respect to y,
∂f

∂y
or fy,

is obtained by di�erentiating f treating x as a con-
stant;

Second partial derivatives: are obtained by di�erentiat-

ing
∂f

∂x
and

∂f

∂y
. There are therefore 4 second derivatives,

i.e.:

�

∂2f

∂x2
(or fxx) which is obtained by di�erentiating

∂f

∂x
with respect to x once more (treating y as a constant
again);

�

∂2f

∂y2
(or fyy) which is obtained by di�erentiating

∂f

∂y
with respect to y once more (treating x as a constant
again);

�

∂2f

∂y∂x
(or fxy) which is obtained by di�erentiating

∂f

∂x
with respect to y (now treating x as a constant);

�

∂2f

∂x∂y
(or fyx) which is obtained by di�erentiating

∂f

∂y
with respect to x (now treating y as a constant);

For most `nice' functions, we have
∂2f

∂y∂x
=

∂2f

∂x∂y

Small increments: given a function f(x,y), it is possible
to calculate the increase (or decrease) in f δf if x and y are

increased (or decreased) by δx and δy: δf =
∂f

∂x
δx+

∂f

∂y
δy.

Change of variables:

case 1: if f = f(x, y) with x = x(t) and y = y(t), then
df

dt
(also writen as f'(t) or ḟ(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

case 2: if f = f(x, y) with y = y(x) then
df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx
.

case 3: if f = f(x, y), x = x(u, v) and y = y(u, v) then:
∂f

∂u
=

∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
∂f

∂v
=

∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

Di�erential: the di�erential of f = f(x, y) is df =
∂f

∂x
dx+

∂f

∂y
dy. Inversely, the expression G(x, y)dx + H(x, y)dy is

an exact di�erential, i.e., there exists a function f(x, y) so

that
∂f

∂x
= G(x, y) and

∂f

∂y
= H(x, y) if

∂G

∂y
=
∂H

∂x
.

Partial di�erential equations (PDE)

Direct integration: if
∂f

∂x
= u(x, y) then f(x, y) =∫

u(x, y)dx+v(y) where v(y) is a function of y only which

can be determined by the initial conditions.

Separation of variables: this method is used to solve 3
classes of PDEs:

� The heat equation:
∂u

∂t
= k2 ∂

2u

∂x2
;

� The wave equation:
∂2u

∂t2
= k2 ∂

2u

∂x2
;

� Laplace equation:
∂2u

∂x2
+
∂2u

∂y2
= 0;

The method consists of:

� Assuming that the solution has the form u(x, t) =
ϕ(x)ψ(t) (or u(x, y) = ϕ(x)ψ(y) in the case of
Laplace equation);

� Putting this into the PDE leads to two independent
ODEs which can be solved using ODEs techniques;

� Using the initial (t = 0) and boundary (x = 0 or
x = some number) conditions to determine the con-
stants of integration.

Note that if sine and cosine functions are involved, the ini-
tial conditions will often lead to a condition like: f(x) =∑
n

An cos (nπλx), where f is some function and λ some

scalar. Then it is handy to recognise that the coe�cients
An are the coe�cients of the Fourier series of the function
f. Most often, a family a function (ϕn, ψn) will be solution
(usually sine, cosine, sinh or cosh functions), and the prin-
ciple of superposition states that any linear combination
of all the solutions is a solution. The general solution will

then be u(x, t) =
∑
n

ϕn(x)ψn(t).
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Random Processes

Statistical de�nitions: The mean of a random vari-
able X which has realisations xi with probability p(xi) is

< X >=
∑
i

xip(xi). The moment of order n of X is

< Xn >=
∑
i

xn
i p(xi). It is custom to denote the mean by

the Greek letter µ.

The variance of X is the moment of order 2 about its mean:
var(X) =< (X− < X >)2 >=< X2 > − < X >2. The
variance describes the variability of X from its mean. The
standard deviation of X is the square root of its variance:
std(X) =

√
var(X). It is custom to denote the variance

and standard deviation respectively by σ2 and σ.

Mean sum theorem: Given a set of random variables
(Xi), <

∑
i

Xi >=
∑
i

< Xi >.

Covariance: For 2 random variables X and Y, the co-
variance is: cov(X,Y) =< XY > − < X >< Y >. The
correlation coe�cient is de�ned as:

cor(X,Y) =
cov(X,Y)√

var(X)var(Y)
.

If X and Y are completely correlated, then cor(X,Y) = 1,
if X and Y are anti-correlated then cor(X,Y) = −1 and
if X and Y are independent then cor(X,Y) = 0. For 2 in-
dependent random variables X and Y: < XY >=< X ><
Y >.

Variance sum theorem: Given 2 random variables X and
Y: var(X + Y) = var(X) + var(Y) + 2cov(X,Y). If X and
Y are independent: var(X+Y) = var(X)+var(Y), and for

a set of independent random variables (Xi), var(
∑
i

Xi) =∑
i

var(Xi).

Combining measurements: If n independent measure-
ments (Xi) are made for a particular quantity, then the

average measurement is X̄ =

∑
i Xi

n
and the variance of

the average is var(X̄) =

∑
i var(Xi)

n2
. If the variance is the

same for all measurements, i.e., var(Xi) = var(X) then

var(X̄) =
var(X)

n
. The coe�cient of variation is de�ned

as
std(X̄)

< X̄ >
and quanti�es the precision of the measurement.

Poisson process: is a sequence of discrete events taking
place at rate λ which is such that the number of observa-
tions N(t) in an interval of length t is Poisson distributed,
i.e.

P(N(t) = n) =
(λt)n

n!
e−λt

and the number of events in disjoint time intervals are inde-
pendent of each other. Then, the time to the next event,
T (which is a continuous random variable), is exponentially
distributed, i.e.:

P(T ≤ t) = 1− e−λt

This process is memoryless, i.e.: P(T > (t + s)|T > t) =
P(T > s).

The Poisson process is very important and widely used to
model statistical processes in Physics, Chemistry and Biol-
ogy.

Decay rate and half-life: the half-life T1/2 is the time

at which the population is halved: N(T1/2) =
N(0)

2
and

is related to the rate of decay λ of the process by the

relationship: T1/2 =
ln 2

λ
.

Numerical methods

Given the ODE
dy

dx
= f(x, y) and the initial condition

y(x0) = y0, we look at methods of integrating the ODE
numerically.

Euler scheme: we know from Taylor series that:

y(x + h) = y(x) + h
dy

dx
(x) +

h2

2

d2y

dx2
(x) + · · ·

y(x + h) ≈ y(x) + hf(x, y)

Therefore we get the recurrence relationship which is the
Euler scheme:

y(x0) = y0

yn+1 = y(xn+1) = yn + hf(xn, yn)

The error will depend on the value of h chosen, so the
smaller the value of h, the smaller the error.

Runge-Kutta scheme: The idea is the same as for the
Euler scheme (approximation using Taylor polynomials),
but the approximation is usually more accurate than with
the Euler scheme.

The formulae for the second-order Runge-Kutta method
are:

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

yn+1 = yn + k2

The formulae for the fourth-order Runge-Kutta method
(which is used most widely) are:

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

k3 = hf(xn +
1

2
h, yn +

1

2
k2)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4
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