

encouraging academics to share maths support resources
All mccp resources are released under a Creative Commons licence

mcccp-richard-5

For the help you need to support your course

Differentiation for Economics and Business Studies Functions of one variable

This leaflet is an overview of differentiation and its applications in Economics.

Author: Morgiane Richard, University of Aberdeen

Reviewer: Anthony Cronin, University College Dublin

The **derivative** of a function f is a new function obtained by **differentiating** f. It can be written f' or $\frac{df}{dx}$. It is the **rate of change** of f and gives information on the shape and optimum values of f.

Table of Derivatives

y = f(x)	$\frac{dy}{dx} = f'(x)$
k constant	0
x	1
x^2	2x
x^n	nx^{n-1}
e^x	e^x
$\ln x$	$\frac{1}{-}$
e^{ax+b}	$ae^{\overset{\mathcal{X}}{ax}+b}$
$\ln\left(ax+b\right)$	\underline{a}
$\ln\left(f(x)\right)$	$\frac{ax+b}{f'(x)}$ $\frac{f(x)}{f(x)}$

Rules of Differentiation

For any function f and g and any constant value k:

Additive constant: if
$$y = f(x) + k$$
 then $\frac{dy}{dx} = f'(x)$

Multiplicative constant: if
$$y=kf(x)$$
 then $\frac{dy}{dx}=kf'(x)$

Addition rule: if
$$y=f(x)\pm g(x)$$
 then $\frac{dy}{dx}=f'(x)\pm g'(x)$

Product rule: if $y = f(x) \times g(x)$ then

$$\frac{dy}{dx} = f'(x)g(x) + f(x)g'(x)$$

Quotient rule: if
$$y = \frac{f(x)}{g(x)}$$
 then

$$\frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Chain rule (derivative of a function of a function):

if
$$y = g(u)$$
 with $u = f(x)$ then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = g'(u) \times f'(x)$$

Shape of Function

sign of	sign of	shape of the curve of f
$\frac{dy}{dx} = f'(x)$	$\frac{d^2y}{dx^2} = f''(x)$	
dx = f(x)	$\frac{dx^2}{dx^2} = f^*(x)$	
> 0	> 0	increasing and convex
> 0	< 0	increasing and concave
< 0	> 0	decreasing and convex
< 0	< 0	decreasing and concave

Stationary points

First Order Condition (FOC): if a point x_0 is such that $f'(x_0) = 0$, then it is a stationary point. It can be a maximum, or a minimum, or an inflection point.

Second Order Condition (SOC): the sign of the second derivative indicates whether the optimum is a maximum, minimum or inflection point:

value of sign of Nature of
$$\frac{dy}{dx}(x_0) = f'(x_0) \qquad \frac{d^2y}{dx^2}(x_0) = f''(x_0) \qquad \text{point at } x_0$$

$$0 \qquad > 0 \qquad \text{minimum}$$

$$0 \qquad < 0 \qquad \text{maximum}$$

$$0 \qquad 0 \qquad \text{inflection}$$

Derivatives in Economics

The **marginal cost** MC is the rate of change of the total cost function TC: $MC = \frac{dTC}{dq}$, where q is the output. Similarly, the **marginal revenue** MR is the rate of change of the total revenue function TR: $MR = \frac{dTR}{dq}$. When MR is positive, TR is an increasing function of q, and when MR is negative, TR is a decreasing function of q.

The **elasticity** E of a function q=f(p) is the rate of proportionate change in q given a proportionate change in p: $E=\frac{\frac{dq}{q}}{\frac{dp}{p}}=\frac{d\ln q}{d\ln p}.$ This is the slope of the function when plotted on a log-log scale.

Figure 1: Examples of decreasing concave and convex functions

Figure 2: Examples of increasing concave and convex functions

